Branch and Bound Methods for a Search Problem

Alan R. Washburn
Department of Operations Research, Naval Postgraduate School,
Monterey, California 93943, USA

Received 14 January 1997; revised 24 October 1997; accepted 24 October 1997

Abstract: The problem of searching for randomly moving targets such as children and
submarinesis known to be fundamentally difficult, but finding efficient methods for generat-
ing optimal or near optimal solutions is nonetheless an important practical problem. This
paper investigates the efficiency of Branch and Bound methods, with emphasis on the
tradeoff between the accuracy of the bound employed and the time required to compute it.
A variety of bounds are investigated, some of which are new. In most cases the best bounds
turn out to be imprecise, but very easy to compute. © 1998 John Wiley & Sons, Inc. Naval
Research Logistics 45: 243—-257, 1998

1. INTRODUCTION

This paper describes several branch-and-bound (B + B) methods for solving a moving-
target search problem, and summarizes computational experience. B + B methods often
involve a quality/cost tradeoff in calculating bounds, an aspect that is explored. The results
may therefore be of some genera interest. Additionally, the search problem may be of
inherent interest in itself, since optimization for practical applications is on the verge of
feasibility.

The search problem is of the type first analyzed by Stewart [9]: Time and space are
discrete, the searcher has a location that cannot change too much from time to time, and
the target moves randomly from one spatia cell to another as the search proceeds. These
assumptions characterize maritime searches for hostile submarines or friendly vessels in
distress, as well as terrestrial searches for lost persons. Current maritime software only
rarely attempts search optimization in such situations (Wagner [13]), and current terrestria
search-and-rescue software never does, at least not in the author’s experience. Part of the
explanation for this lack is the need for effective methods for optimizing large problems,
the subject of this paper.

Heuristic methods are often effective at solving or nearly solving problems of this type.
Dell et a. [4] describe experiments involving several of these. This paper will focus
exclusively on B + B methods, since these can provide bounds on the best possible solution.

2. PATH-CONSTRAINED SEARCH FOR A MOVING TARGET

Thetarget track is X = (Xq, ..., X¢), where X; € C represents the position of the target
a timei. Cisafinite set of cells, and the single searcher as well as the target must at all

© 1998 by John Wiley & Sons, Inc. CCC 0894-069X/98/030243-15

244 Naval Research Logigtics, Vol. 45 (1998)

times be in one of them. The positive integer T is the fixed amount of time available for
search. If the searcher’s track is o = (o4, ..., o1), then the probability of not detecting
track X is some given function n(X, o). The searcher’s object is to minimize the nondetec-
tion probability =« f (X)n(X, o), wheref() isagiven probability mass function. In other
words, the probability law governing the target’s motion is assumed known.

If there were (say) |C| = 9 cellsand T = 10 detection opportunities, there would in
principle be 9'° possible tracks, too many to permit even evaluating the objective function,
much less optimizing it. Since interesting problems can be even larger, special structures
must be imposed to permit optimization. Essentially all work to date has been based on the
assumptions that

n(X, ¥) = exp(=Z(X, ¥)), (1)

where

Z(X,¥) = 3 W(X,)¥(X, 1), (2)

t=1

W(X;, t) being an indicator function for the event (X, = oy); i.e, ¥(x, t) = 1 if and only
if Xx = o,. The ¥ and o notations for a searcher path are equivalent; each is used in the
sequel when convenient. The search effectiveness function W(x, t) is assumed to be
nonnegative for al x € C,1 =t = T. Formulas (1) and (2) include the important instance
where W(-, -) is aconstant W, in which case Z(X, ¥)/W is the number of times N that
the searcher and the target occupy the same cell. Letting QS = exp(—W), n(X, ¥) isthen
(QS)". Thus QS can be identified as the probability of overlooking the target even when
the correct cell is searched. The overlook probability can be made to depend on time and
location through the function W(-, -), but the independence assumption is inherent in the
exponentia detection function.

Let S(oy, 0) be a given nonempty subset of C. Constrain the searcher’s path to be in
this subset at time 1, and for 1 = t < T require that a searcher in cell x at time t must
proceed to some cell in S(x, t) a timet + 1. The set S(x, t) is a nonempty subset of C
corresponding to the ‘‘forward neighbors’ of x. It is also useful to define a *‘ backward’’
set, S*(x, t), to be the set of cells at timet — 1 from which it is possible to be in x at t,
soforxeCandl=t<T,S(x,t+1)={y|lxe S(y,t)}. Forxe C,y € C, and
1=t<T,letu(x,y,t)belif thesearcher visitsxattandy at t + 1, or otherwise 0;
these indicator variables serve to directly trace the searcher’ s route from one cell to another.
Then the problem of minimizing the nondetection probability can be stated as the nonlinear
programming problem NLP1, with 7 = O:

min E(n(X, ¥))
subject to
> Y(x,7+1)=1 and ¥(x,7 +1)=0 forx¢& S(o,, 1), (3)

XES(o,,7)

>ou(x,y, t)=9(xt), 7<t<T, xeC, (4)

yeES(X,t)

Washburn: Branch and Bound Methods for a Search Problem 245

> ooouy,x,t)=¥(xt+1), 1<t<T, xe€C, (5)

yEe S*(x,t+1)

U(x,t) and u(x,y,t)=0 o 1, x€C, yelC, 7<t<T. (6)

Congtraint (3) requires the searcher to start at some cell in S(o,, 7), while constraints
(4) —(6) require the searcher to move from one legal cell to another. The sum in (5), for
example, is‘‘number of times the searcher moves from some cell at timet to cell x at time
t + 1, which must be ¥(x, t + 1). If 7 > 0, it should be understood that o, ..., o. is
specified to be a legal beginning of a searcher track, with only the part after = to be
optimized; the initial cell o, is included for notational convenience. The E() in the
objective function denotes expected value, so that the objective function is a weighted sum
of exponentials of the form (1), one term for each potential target track.

3. BRANCH AND BOUND FRAMEWORK

The following basic B + B algorithm is a slight modification of Stewart’'s[9, 10]. It is
assumed that the bound computed in step 2 reduces to the exact nondetection probability
when the searcher’s entire path is specified (7 = T). K(7) is‘‘the set of continuations yet
to be explored,”” and g* is ‘‘the best hondetection probability yet found.””’

1. Set 7 = 0, initidlize g* to be any number exceeding 1, and let o, = 0.

2. Obtain alower bound g on the nondetection probability, subject to the searcher’s
path following og, ..., o, up to time 7.

3. Ifg<g*and 7 < T, then Branch; i.e, let K(7 + 1) = S(o,, 7), increment
7, let o, be any cell in K(7), and return to 2. Otherwise, the current path has
now been fathomed.

4. Ifq<g*rand 7T =T, let g* = q and save the path oy, ..., or.
5 If 7 = 0, stop. The last saved path is optima and g* is its nondetection
probability.

6. Delete o, from K(7). If K(7) is now empty, decrement 7 and return to step
5. If not, let o, be any cell in K(7) and return to step 2.

If the bound in step 2 is too loose, then no fathoming will occur. The object is to find
relaxations of NLPL1 that are easy to solve, but still provide tight bounds. Fortunately
NLP1 has several relaxations that considerably simplify it. Three of the most important are
described below.

Convex. If binary constraints (6) are replaced by simple nonnegativity requirements,
NLP1 is a convex program for which Kuhn—Tucker conditions are necessary and sufficient
for optimality [11].

Linear. Sinceexp(—Z) = 1 — Zfor Z = 0, alower bound can be obtained by minimizing
1 — E(Z(X, ¥)), which is equivalent to maximizing =, E(W (X, t)¥(X, t)). The
interpretation is that one is maximizing the mean number of detections. This is a longest
route problem where the reward for visiting (X, t) is W(x, t) Prob(X; = x), a relatively
simple optimization problem.

A dlight tightening of this bound is possible if Z(X, ¥) is adways an integer multiple of

246 Naval Research Logigtics, Vol. 45 (1998)

some quantity A > 0, as will be the case if W(x, t) is aways a multiple of A. In that
case let f = (1 — exp(—A))/A, which is smaller than 1, or otherwise let f = 1. Then
exp(—Z(X, ¥)) = 1 — fZ(X, ¥). The rewards in the longest route problem can be
multiplied by f, which will result in a tighter bound.

Distribution of Effort (DOE). Constraints (3) —(5) are network constraints, an exploit-
able structure, but a further simplification results if the searcher is permitted to occupy any
cell at time t that is reachable from the last constrained cell o,.. The set S of such cells
can be obtained from the recurrence S,; = Uxesg S(X, t), t > 7, with S, = {o,}. Then
(3) —(5) can be replaced by

> ¥(x,t)=1 7<t=T. (7)
XES

Since (7) is aready implied by (3) —(5), the replacement is truly a relaxation. This relax-
ation has the advantage that the numerous u-variables disappear from the formulation. A
further relaxation could be obtained by substituting C for S, but there seems to be no
computational advantage in doing so.

4. THE MARKOV SPECIALIZATION

The relaxations described in Section 3 cannot in themselves make B + B a practica
technique as long as evaluation of the objective function still requires enumeration of al
possible target tracks. If NLP1 is to be solvable as a practical matter, either the number of
tracks must be constrained or some structure must be imposed that obviates the need to
enumerate them. Tactical decision aids have been based on the idea that target motion can
be modeled with atrack population on the order of 1000, so that proceeding on the former
course would be a reasonable choice. Nonetheless, al B + B computational work to date
has been based on the Markov specidization of NLP1, a structural assumption that makes
it unnecessary to enumerate paths. The rest of this report also concerns that specialization.

The main advantage of the Markov assumption is that it permits the operation of the
FAB (Forward and Backward) algorithm. The FAB algorithm uses the two functions

P(¥, x, t) = Prob(X; = x and no detection before t), (8)
and

Q(¥, x, t) = Prob(no detection after t, given X, = x), (9)
as well as the relation that

ND = Prob(no detection) = 5 P(V, x, t) exp(—W(X, t)¥(x, t))Q(¥, x, t). (10)

Formula (10) is valid for t = 1, ..., T even without the Markov assumption, but it is
especialy useful in the Markov case because

Washburn: Branch and Bound Methods for a Search Problem 247

a P(Y, x, t) iseasily caculated given ¥(y, u) fory € Candu < t.
b. Q(Y, x, t) is easily calculated given ¥(y, u) fory € Cand u > t.
c. Neither P(W, x, t) nor Q(W, X, t) depends on ¥(y, t) for any y € C.

The import of c is that ¥(-, t) can be changed to increase the objective function as long
as the searches before and after t remain feasible, thus permitting an iterative (FAB)
algorithm for gradually decreasing the objective function. FAB requires repeated evaluations
of P(+, -, -)and Q(-, -, -), sothat aand b are also important. See [2, 15] for the details
of these evaluations. The main use of FAB has been in computing an improving sequence
of search plans for NLP1 and its various relaxations. The limiting FAB search plans might
reasonably be termed ‘‘locally optimal,”’ since a certain class of small perturbations cannot
improve the objective function. Brown [2] shows that the limiting FAB plan is optimal for
the problem with both the DOE and convex relaxations.

The Markov speciaization aso permits an effective generalization of the linear bound
discussed earlier. Suppose that the searcher’s path up to time 7 is fixed; let

Z = iW(Xt,t)\I/(Xt,t) and Z, = i W (X, 1) T(X, t).

t=7+1

Then Z(X, V) = Z, + Z,, with Z, representing the past and Z, the future. Since the
target’s motion is Markov, Z, and Z, are independent when X, is given, and therefore

E(exp(—(Z, + Z,))| X, = x) = E(exp(—Z)| X, = x)E(exp(—Z,)[X, = X). (11)
Let

P*(x, 7) = E(exp(—Z)| X, = x) Prob(X, = X). (12)

P (x, 7) can be obtained from the FAB function P(, x,) by multiplying by exp(—W(x,

T)U(X, 7)); the + superscript conveys the idea that the effect of search at time 7 is
included. Then the nondetection probability is

ND = E(exp(=Z; + Z,)) = 3 P"(x, 7)E(exp(-Z,)[X; = X). (13)

xeC

But exp(—Z,) =1 — fZ*, where f = 1 is the factor introduced earlier in describing the
linear relaxation. Therefore,

ND = 3 P (x,7)—f i > EW(X, (X,)X, = Xx)P7(x, 7). (14)

xeC t=7+1 x€C

But
E(W (X,)P (X,)[X, = X) = W(oy, t) Prob(X; = 01| X, = X). (15)

Now let

248 Naval Research Logigtics, Vol. 45 (1998)

R(o, t) = fW(o, t) > Prob(X = ol X, = X)P" (X, 7) (16)

xeC

be the searcher’s reward for visiting cell o, at time t. A lower bound on ND can now be
obtained by minimizing the right-hand side of (14), which amounts to finding the search
path continuation that maximizes the total reward at times = + 1, ..., T, alongest path
optimization problem.

If the DOE and linear relaxations are combined, then o, should simply maximize
R(o:, t) subjecttobeingintheset S, fort =7 + 1,..., T. The need for solving a longest
path problem is removed, but the bound is less tight on account of the additional relaxation.
A bound of this type (PROP) istested in Section 7, along with an even simpler bound that
is developed in the next section. All three of these will be referred to as linear bounds,
since the linear relaxation is central.

5. AN ““ERGODIC” BOUND

The ergodic bound introduced in this section applies only in the circumstance where the
target’s motion is governed by an ergodic Markov chain, and exploits the fact that such a
chain must have stationary probabilities (e.g., Feller [6]). The theorem below gives a sense
in which every transition brings such a chain closer to stationarity.

THEOREM 1: Consider an ergodic Markov chain on a countable state space C with
transition probability matrix (P;;) and stationary distribution 7. Let v(j, t) be the probability
that the state isj at timet, j € C. Let Sbe a nonempty subset of C, let Ny = S, and for t
< Tlet

N,={i|P; >0 forsomej € Ni1}.
Letr(S, t) = maxjen, v(j, t)/m(j) fort = T. Thenr(S,t + 1) = r(S, t) fort < T.
PROOF: Since the chain is Markov,

v(j,t+1) =3 Pu(i, 1), t<T,jeC. (17)

ieC

Since the chain is ergodic, P; = 7(j)q;/=(i), where (q;) is the transition matrix of the
inverse Markov chain (Feller [6]). Therefore,

v(j, t+ Dix(j) = 3 qu(i, t)/x(i), t<T,jeC. (18)

ieC
If j € Niq, then Py = g = Ounlessi € N,, so it follows from (18) that

v(j, t+ i) = 3 qudi, t)/a(i), t<T,j € N (19)

ieN

Since Zicn, G = 1 for al j € N4, the right-hand side of (19) is bounded above by
r(S,t) regardiess of j. Therefore, r(S,t + 1) = r(S, t), as was to be shown.

Washburn: Branch and Bound Methods for a Search Problem 249
COROLLARY:r(C,t+ 1) =r(C,1t) for dl t.
PROOF: Take S= C.

Theorem 1 is useful in bounding the reward R(o,, t) obtainable at time t by the
searcher, for - < t = T. For this purpose, let S be S, the set of states feasible for the
searcher at timet, and take v(j, t) = Prob(X; = j and no detection at time = or before).
The searcher’s reward at timet isthen fW (o, t) v(oy, t). But v(oy, t) is bounded above
by r(S, 7 + 1)n(o.), so the total reward (16) is bounded by

> R(o,t)=B(o,7)=1 > W(o,)r(S, 7+ 1)7(oy). (20)

t=7+1 t=7+1

This is the ergodic bound. Evaluation of B(o, 7) does not require any further Markov
calculations once the stationary distribution is known.

If #(j) and W(j, t) are independent of j for t > r, then B(o, 7) is independent of o.
Otherwise, the need to solve a longest path problem can be avoided by letting
r = max-. r(S, = + 1), in which case

B(o,7)=fr 3 W(oy, t)n(oy). (21)

t=7+1

Maximizing the right-hand side of (21) still involves alongest path problem, but it is now
a problem that only needs to be solved once because the distribution of the state at time
7+ 1 is no longer involved. The inequality in (20) states that the ergodic bound B(o, 7)
is less tight than the linear bound. The relative advantage of the ergodic bound is in ease
of computation.

6. REVIEW OF PREVIOUS COMPUTATIONAL EXPERIENCE WITH B + B

All discussions in this section concern the Markov speciaization. Stewart [9] considers

the linear relaxation, but finds the resulting bounds ** - - - too weak to be usefully effective
-.”" Heis then led to the DOE relaxation, employing the FAB algorithm to ‘‘solve’’ it.

He acknowledges that the resulting B + B solutions are potentially nonoptimal because
FAB solutions of the DOE relaxation are themselves nonoptimal, but rejects making the
additional convex relaxation (FAB solutions would then be optimal) because the resulting
bounds are again weak. Stewart [10] gives computational results for a one-dimensional
problem where the searcher has two options (right or left) at each time, and T = 10. He
finds the true optimal solution in 101 out of 105 test problems.

Eagle and Yee [5] use the convex relaxation of NLP1 to obtain bounds. This relaxation
has a nonlinear objective function and network constraints. It is solved by an iterative
method where at each stage a linear approximation to the objective function is made. An
attractive feature of this method is that each of these minimizations results in a solution
feasible in NLPL, thus permitting g* to be quickly reduced.

Martins [7] pursues the idea of using bounds that are easily evaluated, rather than tight.
He uses the linear relaxation in the form of Egs. (13) —(16), so calculating a bound takes
the form of alongest path problem. The resulting procedure does more branching than the

250 Naval Research Logigtics, Vol. 45 (1998)

Eagle—Y ee procedure on the same test problems, but still has run times that are smaller
by a factor of about 4. Dell et a. [4] reinforce the conclusion that the linear bound is
computationally superior to the convex bound.

7. A COMPUTATIONAL EXPERIMENT

All of the experiments reported here are for C = {1, ..., N}, aone-dimensional set of
cells. In boundary cells 1 and N, the target moves inward with probability D, or remains
stationary with probability 1 — D. In interior cells, the target moves right and left with
probability D, or remains stationary with probability 1 — 2D. The target’s initial cell is
specified, asis the cell that the searcher must examine at time 1. First the searcher examines
the given cell, then each party moves to a new position, then a second search is made at
time 2, etc., until finally the last search is made at time T. If the searcher’s current position
isx € C, then the searcher’s next position can beany y € C such that | x — y| = 1. The
overlook probability QS = exp(—W(x, t)) isconstant for dl x € C, 1 =t = T. Four
lower bounds are tested, listed below in order of computational difficulty.

1. ERGO2. The random walk chosen for the target has stationary distribution (1/
N, ..., 1/N), and W(x, t) is constant, so the ergodic bound B(c) can be
obtained from (20). P(W, x, t) is caculated up to time = + 1, the last time
at which P(W, x, t) is determined by (o4, ..., o,), but not beyond.

2. PROP. This is the DOE/linear bound described at the end of Section 4. The
forward function P(, x, t) is ‘‘propagated’’ (hence the name) for t > 7 +
1 using the Markov rule, making no correction for the effects of search. PROP
is a tighter bound than ERGO2.

3. MEAN. Thisis the same bound utilized by Martins[7]. Only the linear relax-
ation is made, so a longest path computation is necessary. MEAN is a tighter
bound than PROP.

4. FABC. This is the FAB bound for NLP1 with both the convex and DOE
relaxations [14] . Thisisthe only bound that requires FAB’ s backward function
Q(+, -+, *). Since the backward calculation of Q(-, -,) is performed after
the forward calculation of P(-, -,), the calculations are normally applied
iteratively until P(-, -, -) and/or Q(-, -, +) ‘‘converges’ in some sense.
FABC applies only a single iteration, saving time at the expense of tightness.
Even so, the need for utilizing exponential and logarithmic functions makes
FABC the most time-consuming computation among the four bounds.

Certain other bounds were considered but not tested. The convex bound is not tested
because the MEAN bound appears to be preferable (Martins [7] and Dell et al. [4]). An
ergodic bound ERGO based on the lemma to Theorem 1 is even simpler to compute than
ERGO2, which is based on (20), but ERGO’s bounds are crude when the searcher is far
away from thetarget. ERGO?2 istighter than ERGO, and not much more difficult to compute.
Washburn [16] describes some tests involving ERGO, and also introduces a FAB bound
on the unrelaxed NLP1, but the latter bound does not appear to be competitive.

In the B + B procedure outlined in Section 3, g* can actualy be set to any feasible
nondetection probability in step 1. Using a low value is, of course, best because it makes
fathoming easier, provided that calculation of that value is not too time-consuming. The
FAB algorithm applied to NLP1 (unrelaxed) is used here in al cases to quickly provide a

Washburn: Branch and Bound Methods for a Search Problem 251

Tablel. B + B solution times in seconds for a search problem with T = 15 time periods, N = 25
cells, and where searcher and target both start in cell 13.

Qs=1 Qs=5 QS=.9
D=1 2 3 D=1 2 3 D=1 2 3
Exhaustion 9711 9711 9711 9711 9711 9741 9711 9711 9711
ERGO2 1867 950 1610 626 489 1169 39 83 121
PROP 2004 955 1522 654 478 1109 28 50 .61
MEAN 4301 2027 3251 1389 1016 23.95 55 110 126
FABC 1577 3603 10947 274 961 5317 11 327

good starting path for the searcher. The associated q* is usually not optimal, but usually
not too far off.

7.1. Basic Results

The results of a comparison on a problem with 15 time periods and 25 cells are shown
in Table 1. The times shown are for a FORTRAN implementation running on a 120 MHz
486 PC. The run time for exhaustively examining every path (which, of course, depends
on neither QS nor D) is shown for comparison. Some features worthy of note are:

® Run times decrease strongly with QSin all four cases, particularly for FABC.

® Although ERGO2 has an occasional victory, PROP seems to be the best of the
three linear bounds.

® FABC has a strong preference for problems where D is small and QSis large.
In several cases it is the best bound. There is also one case where its time
exceeds that of exhaustion.

® \When QSis small, the three linear bounds are fastest when D = .2, rather than
when D = .1.

The first bullet above may be counterintuitive, since the target is easiest to find when
QSis small, rather than large. The first look will detect the target with probability 1 — QS,
and the remaining 14 looks can at best increase the number to 1, a margina improvement
when QS is small. Finding the best marginal improvement, however, is a difficult problem
when QSis small, as the solution times in Table 1 attest. In practice, one would look for
an e-optimal solution in such circumstances (see Section 8).

The last bullet may also be counterintuitive, since D = 0 corresponds to a stationary-
target search problem, arelatively easy type. But thelinear bounds do not exploit stationarity,
and the linear approximation becomes crude in problems where the target is almost certain
to be detected. As D becomes smaller, the increasing lethargy of the target makes it easier
to detect, and B + B with alinear bound takes increasingly long to find an optimal solution.
When D = 0 and QS = .5, PROP takes 97 s to find an optimal detection probability of
.997. FABC accomplishes the same task in a fraction (.05) of a second after completely
evaluating only 29 searcher paths. The optimal solution (never move from cell 13) is
obvious.

Here are some details for the case in the middle of Table 1 with QS = .5, D = .2, and
with both searcher and target starting in cell 13, hereafter the ‘*central’’ case. The optimal
searcher pathis(13,13,13,12,13,14,15,14,13,12, 11,12,13,14,15), and the resulting detection

252 Naval Research Logigtics, Vol. 45 (1998)

10 F T T T T T
4

10 E Exhaustion
’a L
® .3
— 10 ¢
Q r
E t
c [
k]
= !
5 o FABC bound
Q10F E
1= 3 3
5 ;
o [

10’ E

' PROP bound
100 1 1 1 1
12 14 16 18 20 22 24

number of time periods(T)

Figure 1. Exponentia growth of computation time.

probability is.905594. This path is one of 1,594,321 examined by the exhaustion procedure.
The numbers of bounding attempts by the four B + B procedures in coming to the same
conclusion are ERGO2 (54,384), PROP (26,115), MEAN (25,977), and FABC (14,844).
The fact that the number of attempts is amost the same for PROP and MEAN indicates
that the DOE relaxation used by PROP has only a dlight effect on bound tightness, and
explains why the simpler PROP has the smaller computation time.

Figure 1 shows the computation time for three procedures on the central case, except
that the number of time periods varies from 13 to 24. The computation time by exhaustion
isalmost exactly 97.11 (3) " ** s over the range tested (13 = T =< 21). This s exponential
growth on a base of 3 because @l interior cells have 3 possible successors. The computation
time for PROP is very close to 4.78 (2.22)" % seconds. This is till exponential growth,
but at least the B + B procedure reduces the base from 3 to 2.22. The other two linear
bounds are not shown, but exhibit exponential growth on the same base. The growth of the
FABC computation time with T is visibly not a straight line, but still it is clear that the
time grows more slowly than for PROP. The FABC time is roughly 9.61 (1.95)™ ** s. By
time 24, FABC is easily the fastest of the five tested procedures.

Figure 2 shows computation times for the same three procedures, but with the QS and
D parameters scaled to reflect the idea that a fixed time interval is simply being subdivided
into T equa parts. The scaling formula for D is D = .2(15/T), so the total variance of
the target’s location over T transitions remains fixed at .2 X 15 = .3. The scaling formula

Washburn: Branch and Bound Methods for a Search Problem 253

10 E T T T T T
‘|O4 2
1 Exhaustion
S |
b .3
~10°F
@ F
E I
c [
.0
E L
5,2
g1oF
8
FABC bound
10’ E
PROP bound
100 1 1 1 1 1
12 14 16 18 20 22 24

number of time periods(T)

Figure 2. Growth of computation time in a scaled problem.

for QSis QS = (.5)™'", so the nondetection probability of T looks in the correct cell is
fixed at (.5)" (it is, of course, unlikely that all looks will be in the cell occupied by the
target—the formula simply fixes the total search effort). Both PROP and FABC benefit
from the scaling in the sense of having lower computation times when T islarge, particularly
FABC. The base for PROP decreases from 2.22 to 2.14, while the base for FABC decreases
dramatically from roughly 1.95 to roughly 1.55. It was mentioned earlier that FABC is
particularly efficient on problems where QS is large and D is small. Figure 2 is further
confirmation. The optimized detection probability is approximately .9 for al values of T in
the scaled problem.

7.2. Hybrid Bounds

The FABC bound is so time-consuming to compute that it is tempting to try PROP or
some other simpler bound first. If the ssmple bound succeeds in fathoming, then the FABC
computations can be avoided; if not, then little has been lost. In any case, the (PROP,
FABC) ‘‘hybrid’’ is certainly tighter than either bound alone, so it is reasonable to hope
that the hybrid might be computationally superior to either of its components.

Of coursg, it is also possible that the hybrid will not be superior. On the central case
where QS = .5, the time for the (PROP, FABC) hybrid is 6.65 s, larger than the time for
PROP and smaller than thetimefor FABC (Table 1). Theinclusion of FABC as asecondary

254 Naval Research Logigtics, Vol. 45 (1998)

Table 2. Comparison of hybrid and pure bounds

Primary Primary Secondary Secondary
attempts successes attempts successes
Time () (1000s) (1000s) (1000s) (1000s)
PROP 147.26 668 445 — —
FABC 159.56 192 128 — —
(PROP, FABC) 135.34 152 57 95 44

bound makes it impossible to have a cheap failure of the primary bound, and the effect is
essentialy to slow down PROP. Change QSto .9 and the hybrid bound has approximately
the same computation time (.33 s) as FABC. FABC is so tight in this case that PROP
usually fails, and the net effect of introducing a primary bound that is easy to compute, but
which usualy fails, is small. Similar tests with ERGO2 and MEAN as the primary bound
come to the same conclusion: hybrid bounds offer no decrease in computation time when
one of the pure components is clearly superior to the other.

However, hybrid bounds can be winners. Table 2 shows the results of a test involving
the (PROP, FABC) hybrid and its two pure components on the central case modified to
have QS = .7 and T = 20. Now 38% of the hybrid calls result in fathoming by PROP, so
that only 95,000 calls to FABC are needed, half as many as with pure FABC. In addition,
46% of the hybrid FABC calls are successful, thus reducing the number of hybrid PROP
calls to a level much smaller than when PROP is employed alone. The net result is that
the hybrid procedure is superior to either of its components.

And yet the hybrid procedure is only slightly superior, even on a case deliberately selected
to favor it. One might hope to find another case or a different hybrid where the success
rates of the components are as large as the rates of 67% for the pure procedures. This turns
out to be avain hope. Intuitively, the problem is that failure of one component is evidence
that the fathoming problem is so hard that the other component will probably also fail.
Formally, consider the graphical tree where each vertex is one of the paths considered by
the B + B procedure (Figure 3). Termina vertexes (‘‘leaves’) correspond to paths that
are fathomed, and other vertexes (‘‘nodes’’) branch once for each successor cell available
to the searcher. If there are L leaves and N = 1 nodes, and if each node branches B = 1
times, then necessarily (L — 1)/N = B — 1, a proposition that can be easily proved by

<
AN

/N

/

Figure3. B + B pictured asatreewithB =3,L =9,and N = 4.

Washburn: Branch and Bound Methods for a Search Problem 255

induction on N (the crucial observation is that turning any leaf into a node adds one node
and B — 1 leaves to the tree). Now, B is 3 for al of the procedures in Table 2, since all
paths are fathomed before getting to any edge cell where only two successors are feasible.
Therefore, the ratio of successful attempts (L) to attempts (L + N) must be very nearly 2.
Thisistrue even for the hybrid procedure in Table 2 if one dividestotal successes (101,000)
by total hybrid attempts (152,000). If f; and f, are the fractions of successful component
attempts in a hybrid procedure, then necessarily f, + (1 — f,) f, = £, so certainly f, and f,
cannot both be 3. In this sense there is a fundamental limit on the efficiency of any hybrid
procedure.

In spite of these discouraging theoretical and computational results concerning hybrid
bounds, thereis still something to be said for making a slow bound like FABC be secondary
to a fast primary like PROP in robust software that must be prepared for a variety of
problems. Little will be lost in problems where the secondary would be better employed
alone, and on other problems the hybrid may be considerably faster than the lone secondary.
There is also something to be said for employing the slow secondary calculation only when
the primary bound ‘‘amost’’ succeeds in fathoming, although the gains from employing
this device are not dramatic [16].

8. SUMMARY AND PROGNOSIS

The search problem considered here happens to be one where a variety of bounds are
available, some emphasizing tightness and some emphasizing speed. To an extent that has
strained the author’s intuition, victory in the sense of total computation time usualy has
gone to bounds that emphasize speed. The MEAN bound seems almost hopelessly crude
a first sight, since it approximates the probability of at least one detection by the mean
number of detections, but still MEAN has performed very well in previous computational
tests. The PROP bound is even less tight than MEAN, since the searcher’s path is not
sufficiently constrained in PROP, but PROP outperforms MEAN by about a factor of 2 in
the testsreported here. Even ERGO2, which achieves afurther increase in speed by disposing
of much of the detail in the motion model, is still competitive within the class of linear
bounds.

Furthermore, the FABC bound tested here is actually the fastest member of aclass, since
the FAB algorithm can be iterated as many times as desired in attempting to achieve
tightness. The best number of iterations turns out to be 1, in spite of the implication that
the Q(-, -, -) function must be based on a previously considered path, rather than the
current one. Again, tightness is sacrificed for speed.

There is a limit to this preference for speed, of course. Per attempt, the fastest lower
bound on nondetection probability is simply O, which requires no computation but will
never fathom a path that is not complete. This bound corresponds to exhaustion, a procedure
that becomes increasingly unattractive as the size of the problem increases. Even so, speed
is an important property of a bound. Most feasible solutions are so bad that it is easy to
prove them nonoptimal, and it is important for a B + B procedure not to spend a lot of
computational time doing so.

The potential attractiveness of sacrificing tightness for speed may have some genera
application, but there remains the specific question of how B + B should be applied to
search problems where both target and searcher move as the search proceeds. To address
this practical question, it is first necessary to distinguish between terrestrial and maritime
searches.

256 Naval Research Logigtics, Vol. 45 (1998)

Search theory is one of the original Operations Research techniques, born in WWII on
account of the importance of locating maritime (particularly submarine) targets [1]. The
continued importance of maritime targets, as well as the clear organizational responsibility
for finding them, has by now led the U.S. Navy and the U.S. Coast Guard to develop
severa tactical decision aids for the search function, including CASP [8], NODESTAR
[12], and others. These computer programs require the user to identify the search mechanism
(eyeball, sonar, - - -) and the nature of target motion, but parameters such as QSand D in
the foregoing are computed, rather than input. As a result, the designer is free to utilize a
fine subdivision of space and time, if he chooses, without imposing a tremendous input
burden on the user. If the subdivision is fine, then there will be many opportunities for
detection, all with alarge nondetection probability, and it is reasonable to expect the FAB
algorithm to play an important role in optimization. In particular, FABC, or possibly a
hybrid where FABC is secondary to one of the Linear bounds, is a natural candidate for a
bounding mechanism in a B + B algorithm (recall Figure 2).

It isnot meant to imply that time should be finely subdivided merely because the capability
isthere. The analyst’s desire to have searches in neighboring time intervals be independent
of each other may mitigate an otherwise strong desire for a fine subdivision. Indeed, the
best subdivision of time is probably the central question in planning (maritime) search
software. Still, to the extent that time is finely subdivided, some version of the FAB
agorithm is indicated as an optimization technique.

Terrestrial search for lost humans shares with maritime search the feature that the target
moves while search proceeds, but there are also some strong differences. Terrain plays a
vital role in both target motion and detection, and diurnal effects play a stronger role than
in the maritime case. Most important, at least in the United States, is that there is no national
organization with the responsibility for carrying out these searches. As aresult, the available
software is relatively primitive. CASIE 3 [3] istypical in requiring that detection probabili-
ties be directly input by the user, one for each cell—the option of computing them is not
available because there is no built-in sensor model. If only to minimize the number of
such inputs required, the user is likely to subdivide time into large periods and estimate
correspondingly large detection probabilities. There may still be nontrivial optimization
problems; indeed, CASIE 3 already includes a single-period optimization capability. B + B
could be useful in solving an optimal searcher path problem, but the indicated bounding
technique would be one of the linear bounds, rather than FABC, since FABC performs
poorly on problems where nondetection probabilities are small (recall Table 1).

But which linear bound is best? MEAN is the tightest of the three, but nonethel ess loses
to ERGO2 and PROP in the calculations reported here because of the computational cost
of longest path calculations. To make MEAN look good, let the target have a predictable
zigzag motion, rather than a random walk: PROP would track the target even if doing so
were not afeasible searcher path, resulting in avery loose bound when compared to MEAN.
To make ERGO2 look good, adopt a stationary Markov motion model where all transition
probabilities are nonzero, thus slowing down PROP and MEAN without affecting ERGO2.
Still, PROP usualy wins the race in the computations reported here, and its conceptual
simplicity is appealing. The best choice must evidently depend on circumstances, but in
problems where the target’s motion is roughly a random walk, the author’s first choice
would be PROP.

Finaly, as a last point in defense of the idea of using B + B on problems of this type,
it should not be forgotten that the basic B + B procedure of Section 3 can be easily adapted
to find an e-optimal solution by simply replacing q by g + ¢ in step 3. The reward for

Washburn: Branch and Bound Methods for a Search Problem 257

being willing to accept a nearly optimal solution can be a dramatic decrease in computation
time [16].

[1]
(2]
[3]
[4]

[5]
(6]
[7]
(8]
(9]
[10]

[11]
[12]
[13]
[14]
[15]
[16]

REFERENCES

Benkoski, S.J., Monticino, M.G., and Weisinger, JR., ‘A Survey of the Search Theory Litera-
ture,”’ Naval Research Logistics, 38, 469—-494 (1991).

Brown, S.S., ‘**Optimal Search for a Moving Target in Discrete Time and Space,’”’ Operations
Research, 28, 1275-1289 (1980).

CASIE 3, distributed by NASAR (P.O. Box 3709, Fairfax, VA 22038, 703-352-1349) and ERI
(4537 Foxhall Dr. NE, Olympia, WA 98506, 360-491-7785).

Dell, RF., Eagle, JN., Martins, G.H.A., and Santos, A.G., ‘‘Using Multiple Searchers in
Constrained-Path, Moving-Target Search Problems,”” Naval Research Logistics, 43, 463—480
(1996).

Eagle, JN., and Yee, JR., ‘‘An Optimal Branch-and-Bound Procedure for the Constrained
Path, Moving Target Search Problem,”” Operations Research, 38, 110-114 (1990).

Feller, W., An Introduction to Probability Theory and Its Applications, Volume 1, Edition 2,
Wiley, New York, 1957, Chap. 15.

Martins, G., ‘‘A New Branch-and-Bound Procedure for Computing Optimal Search Paths,”’
Master’s Thesis, Naval Postgraduate School, 1993.

Richardson, H., and Dicenza, J., ‘' The United States Coast Guard Computer-Assisted Search
Planning System (CASP),”” Naval Research Logistics, 27, 659—680 (1980).

Stewart, T.J., ‘*Search for a Moving Target When Search Motion is Restricted,”” Computers
and Operation Research, 6, 129—-140 (1979).

Stewart, T.J., ‘*Experience With a Branch-and-Bound Method for Constrained Searcher Mo-
tion,”” in B. Haley and L. Stone (Eds.), Search Theory and Applications, Plenum, New Y ork,
1980, pp. 247-253.

Stone, L.D., ‘*Necessary and Sufficient Conditions for Optimal Search Plans for Moving Tar-
gets,’”’ Mathematics of Operations Research, 4, 431-440 (1979).

Stone, L., and Corwin, T., ‘*‘NODESTAR: A Nonlinear, Discrete, Multiple-target, Correlator-
tracker: Part 1,”” U.S Navy Journal of Underwater Acoustics, 45, 525—540, (1995).

Wagner, D.H., ‘‘Naval Tactical Decision Aids,”’ Military Operations Research Lecture Notes,
NPSOR-90-01, Naval Postgraduate School, Monterey, CA, 19809.

Washburn, A.R., ‘“An Upper Bound Useful in Optimizing Search for a Moving Target,”’
Operations Research, 29, 1227—-1230 (1981).

Washburn, A.R., ‘*Search for a Moving Target: The FAB Algorithm,”’ Operations Research,
31, 739-751 (1983).

Washburn, A., ‘‘Branch and Bound Methods for Search Problems,”” NPSOR-95-003, Naval
Postgraduate School, Monterey, CA, 1995.

